Experimental evidence for olfactory predator recognition in wild mouse lemurs

Publication Type:
Journal Article
Year of Publication:
2011
Authors:
Philipp Kappel, Sarah Hohenbrink, Ute Radespiel
Publication/Journal:
American Journal of Primatology
Publisher:
A Wiley Company, Inc., Wiley Subscription Services
Keywords:
, , , , ,
ISBN:
1098-2345
Abstract:

Abstract Although primates have remarkable olfactory capabilities, their ability for olfactory predator recognition is still understudied. We investigated this cognitive ability in wild gray and golden-brown mouse lemurs (Microcebus murinus and M. ravelobensis) that were confronted with four different olfactory stimuli, derived from two Malagasy predators (fossa and barn owl) and two local nonpredator species (brown lemur and sifaka). The predator response was tested (1) in a systematic cage setup and (2) in a two-way choice experiment with two Sherman traps on platforms in the forest (stimulus trap vs. nonstimulus trap). For part 1, the study animals were housed in cages during habituation and 5 days of experiments. One stimulus was tested per night and was presented underneath a drinking bottle. The changes in the time spent close to the stimulus and the drinking time at the bottle were used as indicators of predator recognition. A timidity score was established by classifying the strength of the antipredator response during the experiment. The study animals spent significantly less time drinking and less time in the stimulus area when confronted with fossa odor compared with the other stimuli. The timidity score was significantly higher during the fossa stimulus compared with the nonpredator and the control stimuli. The two-way choice experiments revealed a complete avoidance of the fossa odor, which was not found with the other stimuli. Thus, wild mouse lemurs showed clear signs of olfactory predator recognition in the case of the fossa in both experiments, but no signs of avoidance to the other presented stimuli. The lack of owl avoidance may be explained by less or no aversive metabolites in the owl stimulus or by lower significance for olfactory recognition of aerial predators. Furthermore, the results showed slight differences between the two mouse lemur species that may be linked to differences in their ecology.

Links:

Back to Resources