Testing alternative captive breeding strategies with the subsequent release into the wild

Publication Type:
Journal Article
Year of Publication:
2005
Authors:
Lisa M. Meffert, Nsuela Mukana, Sara K. Hicks, Stacey B. Day
Publication/Journal:
Zoo Biology
Publisher:
A Wiley Company, Inc., Wiley Subscription Services
Keywords:
, , , ,
ISBN:
1098-2361
Abstract:

Abstract 10.1002/zoo.20058.abs We used the housefly (Musca domestica L.) as an experimental model to compare two strategies for the captive breeding of an endangered species: a strategy to minimize inbreeding and balance founder contributions (termed “MAI” for “maximum avoidance of inbreeding”) versus a scheme to select against less fit individuals (disregarding relatedness). By balancing the initial founder contributions, the MAI protocol was analogous to methods for minimizing kinship. In both breeding strategies, the population growth rate was limited to a maximum increase of 50% per generation. Five replicate populations, each starting with five male–female pairs, were subjected to five generations of captive breeding. Six generations of simulated “release into the wild” allowed ad lib breeding with less restrictive population growth potential, in either a benign or stressful environment (i.e., constant or variable temperature). Population size, fecundity, and fertility were assayed throughout the experiment, with juvenile-to-adult survival assayed in the second phase of the project. Allozyme assays determined the resultant inbreeding coefficients from the captive breeding schemes. The MAI breeding scheme resulted in significantly lower inbreeding coefficients and higher fitness, with qualitatively reduced extinction potential, most notable in the stressful environment. Spontaneous fitness rebounds suggested that the MAI strategy facilitated some form of purging of inbreeding depression effects. Importantly, the advantages of the MAI strategy were difficult to detect during the captive breeding phase, suggesting that the long-term advantages of the MAI approach could be underestimated in actual breeding programs. We concur with the common recommendation of maximum avoidance of inbreeding at least for systems with low reproductive potential. Zoo Biol 0:1–18, 2005. © 2005 Wiley-Liss, Inc.

Links:

Back to Resources