Reproduction and Resistance to Stress: When and How

Publication Type:
Journal Article
Year of Publication:
2003
Authors:
J. C. Wingfield, R. M. Sapolsky
Publication/Journal:
Journal of Neuroendocrinology
Keywords:
, ,
Abstract:

Environmental and social stresses have deleterious effects on reproductive function in vertebrates. Global climate change, human disturbance and endocrine disruption from pollutants are increasingly likely to pose additional stresses that could have a major impact on human society. Nonetheless, some populations of vertebrates (from fish to mammals) are able to temporarily resist environmental and social stresses, and breed successfully. A classical trade-off of reproductive success for potential survival is involved. We define five examples. (i) Aged individuals with minimal future reproductive success that should attempt to breed despite potential acute stressors. (ii) Seasonal breeders when time for actual breeding is so short that acute stress should be resisted in favour of reproductive success. (iii) If both members of a breeding pair provide parental care, then loss of a mate should be compensated for by the remaining individual. (iv) Semelparous species in which there is only one breeding period followed by programmed death. (v) Species where, because of the transience of dominance status in a social group, individuals may only have a short window of opportunity for mating. We suggest four mechanisms underlying resistance of the gonadal axis to stress. (i) Blockade at the central nervous system level, i.e. an individual no longer perceives the perturbation as stressful. (ii) Blockade at the level of the hypothalamic-pituitary-adrenal axis (i.e. failure to increase secretion of glucocorticosteroids). (iii) Blockade at the level of the hypothalamic-pituitary-gonad axis (i.e. resistance of the reproductive system to the actions of glucocorticosteroids). (iv) Compensatory stimulation of the gonadal axis to counteract inhibitory glucocorticosteroid actions. Although these mechanisms are likely genetically determined, their expression may depend upon a complex interaction with environmental factors. Future research will provide valuable information on the biology of stress and how organisms cope. Such mechanisms would be particularly insightful as the spectre of global change continues to unfold.

Links:

Back to Resources