Metabolic scaling of antibiotics in reptiles: Basis and limitations

Publication Type:
Journal Article
Year of Publication:
1996
Authors:
Elliott R. Jacobson
Publication/Journal:
Zoo Biology
Publisher:
A Wiley Company, Inc., Wiley Subscription Services
Keywords:
, ,
ISBN:
1098-2361
Abstract:

Abstract 10.1002/(SICI)1098-2361(1996)15:3<329::AID-ZOO11>3.3.CO;2-P The allometric equation y = a · xb has been used to scale many morphological and physiological attributes relative to body mass. For instance, in eutherian mammals, the equation Pmet = 70Mb0.75 has been used to describe the relationship between metabolic rate (Pmet) and body mass (Mb). Similar equations have been derived for squamate reptiles. Recently, this relationship between metabolic rate and body mass has been used in determining appropriate dosages and dosing intervals of antibiotics both intraspecifically for different sized reptiles and interspecifically for those reptiles in which antibiotic pharmacokinetic studies have not been performed. Although this is a simple mathematical process, a number of problems surface when this approach is examined closely. First, the mass constant (a) in reptiles varies from 1–5 for snakes and 6–10 for lizards. No such information is available for chelonians or crocodilians. Unless the mass constant for the unknown species approximates that of the known species, inappropriate dosages and intervals of administration will be calculated. Second, pharmacokinetic differences may exist between widely divergent species, independent of metabolic rate. Third, all available pharmacokinetic studies and metabolic allometric equations are derived from clinically healthy reptiles. Differences more than likely exist between healthy and ill reptiles in regard to uptake, distribution, and elimination of drugs and overall metabolism. While metabolic scaling of antibiotics is a potentially useful and practical tool in drug dosing, these limitations must be considered when dosing an ill reptile. Until more scientifically derived information is available for demonstrating the accuracy of metabolic scaling of antibiotics in reptiles, the clinician will need to understand the limitations of this approach. © 1996 Wiley-Liss, Inc.

Links:

Back to Resources