CZAAWE Resource Article

Cortisol metabolism in the domestic cat and implications for non-invasive monitoring of adrenocortical function in endangered felids
Publication Type 
Journal Article
Year of publication 
1996
Authors 
Publication/Journal 
Zoo Biology
ISBN 
1098-2361
Abstract 
Abstract 10.1002/(SICI)1098-2361(1996)15:1<71::AID-ZOO7>3.3.CO;2-Q Three domestic cats were given i.m. injections of 3H-cortisol to determine the time course and relative proportion of excreted 3H-cortisol metabolites into urine and feces. Most urinary radioactivity was detected in the first sample collected at 3.9 ± 2.5 hr postinjection and accounted for 13.9 ± 2.1% of the total radioactivity recovered. High performance liquid chromatography (HPLC) detected four urinary metabolites, one of which (13.7% urinary radioactivity) eluted with the 3H-cortisol reference tracer and was quantifiable using a commercial cortisol radioimmunoassay (RIA). The majority of cortisol metabolites in feces (85.9 ± 2.1%) was excreted at 22.3 ± 6.2 hr. HPLC analysis detected several fecal metabolites consisting primarily of nonhydolyzable water-soluble forms, none of which eluted with 3H-cortisol or 3H-corticosterone reference tracers. No immunoreactivity was detected in HPLC-separated fecal eluates using the cortisol RIA; however, two of the more polar metabolites were quantifiable using a commerical cortisosterone RIA. The physiological relevance of the immunoreactive fecal metabolites was determined in four domestic cats given an adrenocorticotropin (ACTH) challenge. Increased serum cortisol concentrations were detected within 30 min of ACTH injection, which was maintained for at least 6 hr. A corresponding increase in fecal cortisol metabolite concentrations (ranging from 238% to 826% over individual baseline values) was observed 24–48 hr later. These data indicate that adrenocortical activity can be monitored nonivasively in the cat by measuring cortisol metabolites excreted in feces. This procedure is a potentially valuable tool for endangered felid management to help evaluate responses to physiological and psychological stressors associated with environmental conditions and husbandry practices. (This article is a US Government work and, as such, is in the public domain in the United States of America.) © 1996 Wiley-Liss, Inc.