Assessment of ovarian function in the African elephant (Loxodonta africana) by measurement of 5α-reduced progesterone metabolites in serum and urine
Publication Type: |
Journal Article |
Year of Publication: |
1997 |
Authors: |
M. Heistermann, B. Trohorsch, J. K. Hodges |
Publication/Journal: |
Zoo Biology |
Publisher: |
A Wiley Company, Inc., Wiley Subscription Services |
Keywords: |
hormone excretion, luteal function, non-invasive monitoring, ovarian cycle, urine |
ISBN: |
1098-2361 |
Abstract:
Abstract 10.1002/(SICI)1098-2361(1997)16:3<273::AID-ZOO7>3.3.CO;2-6 We have previously shown that 5α-pregnane-3,20-dione (5αDHP), and 5α-pregnane-3-ol-20-one (5α-P-3-OH) are the major luteal and circulating progestins in the African elephant. Therefore, the aim of the present study was to determine (1) circulating levels and patterns of secretion of 5α-DHP in relation to progesterone (P4) throughout the ovarian cycle, (2) the presence and relative abundance of 5α-reduced progestins in urine and (3) whether their measurement in urine would provide a non-invasive method for monitoring luteal function. Urine samples were collected weekly throughout a total of 13 ovarian cycles from 5 females. In addition, matched blood samples were collected during 6 cycles from 2 of the 5 animals. All hormone measurement, were carried out by enzymeimmunoassay following extraction. Urine was hydrolyzed prior to extraction. Profiles of P4 and 5α-DHP in serum followed a similar cyclic pattern and both measurements were significantly correlated (r = 0.78–0.98, mean 0.89, P < 0.001). Concentrations of 5α-DHP were, however, 10–20 fold higher than those of P4. I addition, 5α-DHP measurements showed a more pronounced luteal phase increase than that of immunoreactive P4. HPLC co-chromatography confirmed the presence of large amounts of 5α-P-3-OH in urine as a single immunoreactive peak, whereas 5α-DHP was present in very low levels and measurable only as one of several immunoreactive substances. Measurements of urinary 5α-P-3-OH were significantly correlated to serum 5α-DHP measurements in each of the 6 cycles (r = 0.72–0.93, mean 0.81, P < 0.001), whereas correlation coefficients between urinary and serum 5α-DHP values were generally lower (r = 0.34–0.83, mean 0.69) and significant in only 4 of the 6 cycles. Accordingly, only urinary excretion of 5α-P-3-OH, but not of 0.15–0.20 μ/mg Cr in the follicular phase and 10-fold elevated levels (1.8–2.2 μg/mg Cr) in the luteal phase. Based on the intervals between successive luteal phase increases in urinary 5α-P-3-OH, a mean cycle length of 14.1 ± 1.8 weeks, comprising a follicular phase of 5.0 ± 0.9 weeks and a luteal phase of 9.1 ± 1.4 weeks was determined for the 13 cycles studied. The results indicate that measurements of 5α-P-3-OH in urine provide a reliable non-invasive method for monitoring luteal function in the African elephant. Zoo Biol 16:273–284, 1997. © 1997 Wiley-Liss, Inc.