A soy supplement and tamoxifen inhibit sexual behavior in female rats

Publication Type:
Journal Article
Year of Publication:
2004
Authors:
Heather B. Patisaul, Jordan R. Luskin, Mark E. Wilson
Publication/Journal:
Hormones and Behavior
Keywords:
, , , , , ,
ISBN:
0018-506X
Abstract:

In addition to displaying proceptive (hopping and darting) and receptive (lordosis) behaviors during a sexual encounter with a male, female rodents will regulate the timing of the encounter by engaging in a series of approaches and withdrawals from the male, a behavior termed paced mating behavior. Proceptive, receptive, and paced mating behaviors are all regulated by, and sensitive to, estrogen and progesterone, suggesting that compounds capable of disrupting these critical hormones may also perturb the display of female sexual behavior. The present experiments examined the impact of the selective estrogen receptor modulator (SERM) tamoxifen and a popular soy phytoestrogen dietary supplement on female sexual behavior in rats. Ovariectomized female rats were given either tamoxifen (TAMOX) by implant or the soy supplement through the diet then injected with estradiol benzoate (EB, 10 [mu]g) or oil followed 48 h later with an injection of progesterone (P, 500 [mu]g). Animals were then tested for sexual behavior 4 h after the P injection. Neither compound had any effect on sexual behavior when administered in conjunction with P alone; however, both significantly diminished receptive behavior, as measured by the lordosis quotient (LQ), in animals primed with both EB and P. Similarly, the hopping and darting rate was also significantly depressed in both the soy- and TAMOX-treated animals, compared to the EB- and P-treated controls, with the soy-treated animals showing significantly less proceptive behavior than the TAMOX-treated animals. Finally, soy but not TAMOX significantly attenuated paced mating behavior in animals compared to the EB- and P-treated controls. These results demonstrate that both the soy supplement and TAMOX act as estrogen antagonists on both proceptive and receptive behavior in female rats.

Links:

Back to Resources