Carotenoids, vitamin A, and vitamin E concentrations during egg development in panther chameleons (Furcifer pardalis)

Publication Type:
Journal Article
Year of Publication:
2002
Authors:
Ellen S. Dierenfeld, Edward B. Norkus, Kathryn Carroll, Gary W. Ferguson
Publication/Journal:
Zoo Biology
Publisher:
A Wiley Company, Inc., Wiley Subscription Services
Keywords:
, , ,
ISBN:
1098-2361
Abstract:

Abstract 10.1002/zoo.10039.abs Insects are known to be poor sources of preformed vitamin A, leading to the speculation that insectivorous species, including reptiles, may be able to convert carotenoid precursors to meet dietary requirements for this nutrient. This study was conducted to indirectly evaluate carotenoid and vitamin A metabolism in the panther chameleon (Furcifer pardalis). Eggs were obtained from females in Madagascar that were yolked either early or later in the breeding season, and carotenoid (α- and β-carotene, cryptoxanthin, lutein/zeaxanthin, and lycopene), vitamin A, and vitamin E concentrations were measured in egg contents in early, middle, or late embryonic development. An overall trend of decreased nutrient concentration as eggs matured (from egg period 1 (yolks) to egg period 3 (embryos)) was seen within both clutch groups. The season of clutch deposition was a significant influence on egg weight, α-carotene, and lutein/zeaxanthin concentrations, but on no other nutrients. Chameleon yolks contained considerably higher levels of carotenoids than levels previously reported from two viviparous lizard species, and β-carotene concentrations were of the same magnitude as reported in grazing tortoises. β-Carotene and β-cryptoxanthin were the predominant carotenoids in yolk and embryos, comprising about 95% of total carotenoids detected. Measurable concentrations of retinol at all stages of egg development in the chameleons suggests effective conversion from carotenoid precursors, with concentrations similar to those measured in other lizard eggs. Information from eggs obtained in native habitats may provide baseline data on nutrient interactions to improve and optimize captive dietary management; preliminary data suggest that micronutrient environments may vary over the protracted breeding season, with possible implications for embryo health and survival. Zoo Biol 21:295–303, 2002. © 2002 Wiley-Liss, Inc.

Links:

Back to Resources